Monday, August 31, 2009

Imagine Science Film Festival

Just a quick note before I doze off for tomorrow's work.

NYC, befitting its status as one of the more interesting places to live in around the world, is the host to this amazing event called the Imagine Science Film Festival. Now I'm nuts for all things science, but I especially love this festival in comparison to other science-y things to see and do around the city (with possible exception of DIYBio-NYC).

I personally believe that arts and sciences go hand in hand and that current division between the sciences and the 'humanities' is something of a temporary cultural aberration that we'll all look back and laugh at. And the kind of works I saw at last year's Imagine Science Film Festival events showed me a glimpse of what a future with sciences and humanities intermingled together might look like. It's not so much as the specifics of the individual films but the overarching theme pervading through the atmosphere of the whole festival itself that caught my attention. Perhaps it's the passion of the event organizers rubbing off on others watching the films. Perhaps it was just me realizing something I already had inside me through the mirror of projector screens.

If you're in the NYC area, make sure to check out the webpage for the imagine science films and mark the dates on the calenders (there's a screening benefit program this September 9th). Last year most of the screenings were free and I get a feeling that it will continue to be that way this year as well. If you're not in the NYC area, feel free to donate in return for some cool t-shirts ;) You'll be supporting a worthy cause.

And here's the festival trailer for your viewing pleasure.

ISFF 2009 Trailer from Imagine Science Films on Vimeo.

Monday, August 17, 2009

Pi Cubed, the iPhone app

Just a little post on an awesome app I found on the twitter.

The application is called Pi cubed, and it's basically a calculator on iPhone that utilizes the touch interface. The description I'm giving here sounds depressingly simple, but you need to see this application in person in order to understand how cool it is, and how relatively mundane act of calculation can be made fun and interactive simply through some interface change.

Here is a video of the application in action via http://theapppodcast.com site.



As you can see, this isn't the kind of calculator designed to help you out with your pocket change. The support for formatting the equations of increasingly complex form to pdf or text output through email means that the application is aimed at students and possibly professional who might have some great ideas for equations on the go (though in that case the absence of LaTeX formatting is a little jarring). This application is obviously aiming to be a type of mobile Mathematica.

I'm a huge supporter of scientific apps on mobile platforms. I think the market for scientific applications on the increasingly sophisticated mobile handsets is a huge opportunity and is one of the things that might actually help in changing the world for the better by bringing the lab out of the universities and corporations. So the whole Mathematica-mobile aspect of this application, and inevitable coming of even more sophisticated mathematics/sciences packages for mobile platforms is exciting to me.

I just have one problem with this though. Why iPhone? iPhone isn't open. If you want to develop for an iPhone you need to clunk down for a computer capable of running OS X natively, and you use Apple proprietary toolset that no one else in the industry uses. The draconian app approval process and anti-competitive behavior at Apple had been making the headlines in tech communities lately. I guess this is just a market issue, but I find myself keep hoping for a decent Android based replacement for iPhones that developers can distribute their work for.

Sunday, August 16, 2009

Synthetic Biology on KQED QUEST

Here are two videos on synthetic biology. The first one is a short introduction to synthetic biology produced by the wonderful people at KQED QUEST program, which goes into some level of detail on what synthetic biology is and what we are doing with it at the moment. Certainly worth some of your time if you're interested in this new exciting field of science.


QUEST on KQED Public Media.

The second video is the extended interview with Drew Endy available off their website... While the field of synthetic biology in the form we now know and love probably began with the efforts of Tom Knight at MIT, Drew Endy is certainly one of the most active and clear thinking proponents of the scientific field of synthetic biology.


QUEST on KQED Public Media.

If you hadn't guessed yet, I'm really big on synthetic biology. I think it's one of the most exciting things happening in the sciences today, not just for biologists but for mathematicians and physicists in that synthetic biology might one day provide a comprehensive toolset for studying the most complex physical system known to humanity so far... That of complex life-like systems.

I also believe that abstraction driven synthetic biology cannot manifest without a reasonably sized community of beta-testers willing and able to use the new parts and devices within original systems of their own creation. Computer languages like python and ruby needed efforts of hundreds of developers working in conjunction with each other for a multiple years to get where they are today. Complete operating system like Linux took longer with even larger base of developers and we still have usability issues. Synthetic biology must deal with systems that are even more complex than most computerized systems, so it's not unreasonable to think that we'll be needing an even wider deployment of the technology to the public and active community involvement in order to make it work as engineering capable system.

So I am a little dismayed, along with legions of other people who were initially excited by the promises of synthetic biology in conjunction with diybio community, to find that access to BioBrick parts and iGEM competition is severely limited against any amateur biology group operating outside conventional academic circles.

You see, unlike computer programming, constructing synthetic biology systems require BioBrick parts from the registry of standard biological parts. Right now it is next to impossible for diy-biologist interested in synthetic biology to get his or her hands on the BioBrick components through proper channels. The DIYBio-NYC group alone had quite a few number of people lose interest because of uncertain future aspects of being allowed access to the BioBrick parts and talking to people from around the world on that issue I'm beginning to think that there are a lot more of such cases. So far the major reasoning behind the restricted access seem to be the safety issue, but considering that the regular chassis used to put together BioBrick parts is based on academic strains of E.Coli that are even more harmless than your average skin cell I can't see much wisdom in restricting access to the parts on basis of safety.

The bottom line is, the state of synthetic biology and BioBricks foundation at the moment is forcing a lot of people, some of them quite talented, who are enthused about contributing to a new emerging field of science to back down in either confusion or disappointment. Considering that the very structure of synthetic biology itself demands some level of public deployment to stress-test and demonstrate the effectiveness and stability of its individual parts and devices (with creation of those individual parts and devices left to the highly trained professionals at up scale laboratories) this is highly unusual state of affair that is not motivated by science behind synthetic biology. I might even go as far as to say it has the distinct aftertaste of political calculations of public relations kind.

The field of synthetic biology will never achieve its true potential unless the BioBricks foundation and iGEM administrators come up with some way for people outside traditional academy settings to participate in real design and construction of synthetic biology systems.

Friday, August 14, 2009

Whole Foods CEO on UHC

UHC, of course, refers to the universal health care, which seem to be the hot topic these days. There are lots of arguments flying around on both sides of the health care reform and universal healthcare in America, some of them more reasonable than the other.

Well, I just though I'd share an interesting article I read on Whole Foods CEO John Mackey's editorial on the Wall Street Journal. Apparently, the CEO argues that the constitution does not make guarantees on the life and health of the individual citizens, so it's not the business of the government to get involved in health care. He alternatively suggests that people buy and eat from Whole Foods market for preventive health care.

Now mind you, this is a blog post by a college student (with our infamous liberal leanings) with a bitter memory of childhood torn by his father's kidney transplant surgery. So yes, I'm all for universal health care. It wasn't' easy watching my mother trying to pay $4700 per month hospitalization fee during my father's dialysis period, and it wasn't easy selling practically everything we owned to pay for his surgery.

There's something really odd when I hear people talking against universal health care. What's exactly bad about it? Most other developed countries in the world have it like Sweden, Japan, and Germany, and they seem to like it. I experienced it first-hand when I lived in South Korea, and I liked it too. With the billions (if not more) the U.S. government's already spending on health care insurance companies, it should be possible to run some form of universal health care in this country as well... And yes, you're reading this correctly. The U.S. government already spends quite a sizable amount of money on health insurance companies. In fact, U.S. government spends the most amount of money on health care out of all the developed nations in the world, and has the least number of people covered with least life expectancy out of all the OECD nations. Something a lot of those people at the 'town hall meetings' seem to conveniently ignore.

But that's not all. If it's a simple matter of getting the data out most people out there should be proponents of universal health care system by now. If they were actually interested in providing good health care, whether private or government mandated, they should be combing through the proposed health care reform bill pointing out excesses (I'm sure there are some) in the list and pointing out improvements. But it's not happening. The most extensive combing-through of the health care bill done by its opponents so far concentrated on the clause on hospice care counseling, labeling it as 'death panel.' Well from what I'm seeing the same hospice care counseling is included as a part of standard employee coverage package from many private insurance companies (in this episode of the Colbert Report, the UHC proponent Jonathan Cohn points out that employees of the Colbert Report show are all covered by contracts with the so-called 'death panel' clause).

The opponents of the health care reform seem to be against the 'idea' of any kind of change made by the Obama administration regardless the real benefits or disadvantages resulting from the change... However, do they truly believe that low confidence in certain regime and certain political characters is enough reason to reject a bill that might end up saving thousands if not millions of lives in this country? Are human lives so fickle and worthless that they can be thrown out for the sake of political rhetoric?

Then there are people like John Mackey. The kind of people who believe that government has no business ensuring the well-being of its citizens. Such arguments usually go hand-in-hand with the kind of low-brow, thinly veiled suggestion that people who cannot afford conventional health care, notably the ones in lower income bracket, are probably not worth helping. While such notion might work with running a corporation, it would be a mistake to think such attitude scales to the level of national governance. Maybe Mr. John Mackey leaves mess around his house. Maybe Mr. John Mackey like to target practice in his personal property. Such behaviors are perfectly legal in his own personal microcosm. However, if Mr. John Mackey applies that same behavior to public properties by leaving garbage around the City Hall offices and performing target practice in the crowded Times Square... The results would be disturbing.

If there's one thing I've learned during the history courses through my high school years, it's that nations come and go. Contrary to some popular belief there is no natural law that states the United States of America will exist regardless of how its members treat each other. This nation only exists because there is a united will and cycle of trust and responsibility. If a national government that collects taxes and enforces its codes of law cannot take care of the very basic well-being of its citizens, why should they be loyal to the country? Never mind the capacity. If the government does not even have the will to safeguard its citizenry why should they be loyal to that government? Why should they go out to wars and die to protect that country? It's a very simple matter of loyalty. If the government itself insists on not providing for its citizens certain level of amenities required for the very basic act of survival (we're not talking about luxury condos or spa vacation here, folks. Just staying alive), the said government cannot possibly expect the same citizenry to follow its rules of law, perhaps except through application of force. Sensible people usually call that oppression. Sensible people don't kill people and rob stores because they are scared of getting hurt in the process. They don't do it because it's morally objectionable, and because they have faith in continuation of the society in which they are members.

I am profoundly disturbed by some people coming out of the woodwork for the universal health care debate, by their blatant lack of respect for human dignity and lack of concern for the well being of their fellow human beings... And in the case of Mr.John Mackey, the horrible financial sense in suggesting that buying overpriced groceries is a replacement for genuine health care system.

Thursday, August 13, 2009

How to change the world Rev.

This is a minor revision of the how to change the world post I made a while ago.
I still think most of the stuff I've written here are quite relevant. The importance of science and access to science for the general public in the coming age will decide the path of the future. And reliance on computing intensive coding for things that should not be computing intensive in the first place would be IT equivalent to driving a Hummer to a grocery store 3 blocks away.

The information superhighway is more or less in place. It's upto us to decide what that infrastructure will be used for.

This is a bit of rant post on something I thought of after watching bunch of old hacker-themed movies from the Hollywood. It continues to amaze me how I can participate in all sorts of crazy things even with the summer studies and jobs I need to keep up with. I guess that's the benefit of living in place like NYC.

I've been watching some old hacker movies lately. And I just can't believe what kind of cool things those movie hackers were able to pull off with their now decades-old computers and laptops. Computers with interfaces and hardware that exudes that retro feel even across the projector screen. I know a lot of people with brand-spanking-new computers with state of the art hardwares and what they usually do, or can do with those machines aren't as cool as the stuff on the movies being pulled off with vastly inferior hardware and network access. Of course, like everything in life it would be insane to compare the real with the imagined, and Hollywood movies have a bad tendency to exaggerate and blow things out of proportion (I'm just waiting for that next dumb movie with synthetic biology as a culprit, though it might not happen since Hollywood's been barking about indecency of genetic engineering technology for decades now). Even with that in mind, I can't help but feel that the modern computerized society is just way too different from the ones imagined by artists and technologists of the old.

Ever heard of younger Steve Jobs talking in one of his interviews? He might have been a rather nasty person but he certainly believed that ubiquitous personal computing will change the world for the better. Not one of those gradual, natural changes either. He actually believed that it's going to accelerate the humanity itself, very much like how Kurzweil is preaching about the end of modernity with the upcoming singularity. Well, personal computing is nothing new these days. It's actually quite stale until about a few months ago when people finally found out glut-ridden software with no apparent advantage in functionality were bad things, both in terms of user experience and economics. Ever since then they've been coming out with some interesting experiments like the atom chipset for netbooks (as well as netbooks themselves), and Nvidia Ion system for all sorts of stuff I can't even begin to describe. And even with the deluge of personal computing in the world we have yet to see the kind of dramatic and intense changes we were promised so long ago. Yeah sure, the world's slowly getting better, or changing at least. It's all there when you take some time off and run the real numbers. It's getting a little bit better as time goes on, and things are definitely changing like some slow-moving river. But this isn't the future we were promised so long ago. This isn't the future people actually wanted to create.

We have engines of information running in every household and many cellphones right now. Engines of information meaning all sorts of machinery that can be used to create and process information content. Not just client-side consumption device where the user folks money over to some company to get little pieces of pixels or whatever, but real engines of information that's capable of creating as well as consuming using all of the hardware capabilities. It's like this is the Victorian Era, and everyone had steam engine built into everything they can think of. And nothing happened. No steam cars, no steam blimps, no nothing. The world's rolling at the same pace as before and most people still think in the same narrow minded niches of their own. What's going on here? Never had such a huge number of 'engines' responsible for creating an era in history been available to so many people at once. And that's not all. Truly ubiquitous computing made available by advances in information technology is almost here, and it is very likely that it will soon spread to the poorer parts of the world and remoter parts of the globe traditionally cut off from conventional infrastructures.

But yet again, no change. No dice. Again, what's happening here, and what's wrong with this picture? Why aren't we changing the world using computers at vastly accelerated rate like how we changed the world with rapid industrialization (not necessarily for the better, of course)? That's right. Even compared to the industrialization of the old times with its relatively limited availability and utility of the steam engines we are falling behind on the pace of the change of the world. No matter what angle you take there is something wrong in our world. Something isn't quite working right.

So I began to think during the hacker movie screening and by the time the movie finished I was faced with one possible answer to the question of how we'll change the world using engines of information. How to take back the future from spambots, 'social gurus', and unlimited porn.

The answer is science. The only way to utilize the engines of information to change the world in its tangible form is science. We need to find a way to bring sciences to the masses. We need to make them do it, participate in it, and maybe even learn it, as outlandish as the notion might sound to some people out there. We need to remodel the whole thing from the ground-up, change what people automatically think of when they hear the term 'science'. We also need the tools for the engines of information. We need some software based tools so that people can do science everywhere there is a computer, and do it better everywhere there is a computer and an internet connection. And we need to make it so that all of those applications/services can run on a netbook spec'd computer. That's right. Unless you're doing serious 3D modeling or serious number-crunching you should be able to do scientific stuff on a netbook. Operating systems and applications that need 2GB of ram to display a cool visual effect of scrolling text based documents are the blight of the world. One day we will look back at those practices and gasp in horror at how far they held the world back from the future.

As for actual scientific applications, that's where I have problems. I know there are already a plethora of services and applications out there catering to openness and science integrated with the web. Openwetware and other synthetic biology related computer applications and services come to mind. Synthetic biology is a discipline fundamentally tied to usage of computer, accessibility to outside repositories and communities, and large amateur community for beta testing their biological programming languages. It makes sense that it's one of the foremost fields of sciences that are open to the public and offers number of very compelling design packages for working with real biological systems. But we can do more. We can set up international computing support for amateur rocketry and satellite management, using low-cost platforms like the CubeSat. I saw a launching of a privately funded rocket into the Earth's orbit through a webcam embedded into the rocket itself. I actually saw the space from the point of view of the rocket sitting in my bedroom with my laptop as it left the coils of the Earth and floated into the space with its payload. And this is nothing new. All of this is perfectly trivial, and is of such technical ease that it can be done by a private company instead of national governments. And most of the basic the peripheral management for such operations can be done on a netbook given sufficient degree of software engineering and reliable network connection. There are other scientific applications that I can rattle on and on without pause, and there are plenty of people out there much better versed in sciences who can probably come up with even cooler ideas... So why isn't this happening? Why aren't we doing this? Why are we forcing people to live in an imaginary jail cell where the next big thing consists of scantily clad men/women showing off their multi-million dollar homes with no aesthetic value or ingenuity whatsoever? Am I the only one who thinks the outlook of the world increasingly resembles some massive crime against humanity? It's a crime to lock up a child in a basement and force him/her to watch crap on T.V., but when we do that to all of humanity suddenly it's to be expected?

We have possibilities and opportunities just lying around for the next ambitious hacker-otaku to come along and take. But they will simply remain as possibilities unless people get to work with it. We need softwares and people who write softwares. We need academics willing to delve into the mysterious labyrinths of the sciences and regurgitate it in user-friendly format for the masses to consume, with enough nutrient in it that interested people can actually do something with it.

This should be a wake-up call to the tinkerers and hackers everywhere. Stop fighting over which programming language is better than others. Stop with the lethargic sarcasm and smell the coffee. Learn real science and hack it to pieces like any other system out there.

Get to work.

Change the world.

Tuesday, August 11, 2009

NASA proposal to move the planet.

Scientists at NASA are discussing an interesting theoretical exercise in cooling off the Earth, by moving it further away from the Sun. According to their calculation it is possible to move the Earth to another orbit through controlled impact with a few meteors, which will end up prolonging the useful lifespan of the planet by about six billion years, effectively doubling it's life.

Sure, the bit with meteoric impact has me wondering if anything will be alive in that cooler planet, but still, this means that it is possible to work out the numbers for artificially engineering an existing planet's condition. It's all theoretically possible, and not at all far fetched.

Me, I'm interested in seeing this idea applied to other large masses floating around the solar system. Maybe sometime in the distant future we'll capture an asteroid the size of a planet, like the one as large as the Earth that recently impacted against Jupiter. Maybe we'll slam other large masses at the asteroid through careful application of rockets and mass drivers, putting it into a synchronous orbit around the Earth. We'll mine the asteroid for its rich minerals and other natural resources, gradually turning it into a habitable planet with its own wonders and mysteries.

Fast forward another thousand years, and such planetary system building exercise had become so trivial that you can take a course in universities (assuming they're still around in some form) for planetary systems engineering. Maybe people will even begin to see it's utility beyond resource and land grabbing. People will begin to construct large stars held together by the bonds of gravitation, slowly turning the universe into a large architecture, with myriads of different cultures and ideologies dwelling within its arches and bases.

What will happen to nationalities and histories in such a world?

Meteor Shower tonight!

According to the information gleamed from the twitter, tonight is the night of the biggest meteor shower of this year.

The meteor shower will be visible starting around early evening lights of 9~PM, peaking at 1 AM. I'm certainly looking forward to staying up late and checking out the shower of the stars. It's only feels like yesterday that I checked out the solar Eclipse and first private rocket/satellite launch through web feed, it's good to finally get a chance to check out the spatial event with my own eyes.

I just hope all the light pollution from Manhattan doesn't get in the way too much...

Sunday, August 9, 2009

Lectures and Presentations

Long time no see on the blogosphere. I've been busy during the summer with all the usual stuff, mostly learning and working. I'm glad to say that I've almost finished the Exploring Complexity: An Introduction book during the summer, and I was even able to get some of the mathematics out of the way. I think I was able to model a pretty neat animation on some of the methods demonstrated in the book, and I'll try to post it soon.

I've also been saving up for going skydiving before the summer's over... I've always dreamed of the skies (my first choice in college education was majoring in aeronautics, never quite made it though), so it's only natural that I do something that involves full-contact with the air up there. Living on the student budget means that I have to work some extra jobs for that though. Some a bit more crazier than the others.

And of course, there's always the DIYBio NYC. I've been trying to come up with some decent ideas, but everything I can think of at the moment mostly revolves around the kind of project that would require some sort of dedicated labspace. All I can do at the moment is to prepare for that inevitable day when we'll obtain access to a labspace through independent studies. Some of the things I've talked about the members during a recent meeting regarding the state of the group and the processes that are involved in constructing artificial vesicles were very enlightening, and I intend to do a full-length post about that some time in the near future.

On to the main post...

During today's twitter and identi.ca browsing I happened upon some interesting resources for scientists and potential scientists.

The first one is a collection of links and documents on how to prepare a scientific presentation. I haven't had the time to read through it yet, but I know some of the posts on the list, and if the rest are like the ones I know, they are definitely worth a read, especially for an aspiring scientist like me. It's amazing just how many things are involved in preparing a half-way decent presentation, and how most people are just plain terrible at it. I've sat through my share of lectures/symposiums/conferences and there's nothing more painful than a horrible presentation with irrational powerpoint.

The second resource I want to share with you is osgrid. It's a virtual environment tool like the second life except that it's opensource. It's relatively simple to download the environment and run it off your own servers, though it also means that you 'need' to run it on your own server for the whole thing to work. I'm really interested in finding out how this environment can be used for scientific research. Perhaps virtual laboratories running off university computer clusters? Open educations tool like a virtual university? A method for scientists to interact with their own 3D datasets in clean and intuitive manner? There are plenty of possibilities out there.

... I can also think of a few ways to utilize some of the stuff for the DIYBio community.

Thursday, August 6, 2009

Synthetic Biology interlude

This blog is currently underconstruction, since I wanted to port all the posts on my previous blog on livejournal over here before I wrote anything new (a tiresome process since Blogger only allows 50 entries per day, and I have about 280~300 posts that are waiting to be imported).

Well I'm afraid I'm going to have to break the rule here because I found something that's really just too awesome to wait.

There's a six hour lecture/presentation by George Church and Craig Venter on the Edge website right now. It's about the most rigorous introduction to the field of synthetic biology on the net in continuous video format at the moment, given by two of the most brilliant minds in the field. If you have even a modicum of interest in synthetic biology, you should run and watch the video right now... I'm trying to find a way to download the vids so I can watch them on my iPod.

This is a refreshing change of pace from all the synthetic biology stuff on the net targeted at broader audience, most of which tend to focus on conceptual sides of synthetic biology instead of the technical background that makes it so alluring.

Abundance of educational data on the net these days is staggering, compared to the days of my prepubescent web surfing days when everything revolved around telephone modem connection and American Online services actually mattered. If only I had access to this caliber of information during those days.